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Escape Rates in Hamiltonian Systems 
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Particles escape from the vicinity of invariant toil is macroscopically modeled 
by a nonuniform diffusive process. The space dependence of transport coef- 
ficients is fixed by using perturbation theory scalings. This leads to universal 
predictions for the escape rates that are then observed in numerical simulations. 
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I. I N T R O D U C T I O N  

Dynamical astronomers have started in the latest years quantitative 
investigations of long-time effects in the Solar System. The progresses in 
computational methods permit now to follow the evolution of thousands of 
test particles over times of the order of billions of years. A specific attention 
has been paid to the rates which characterize the escape of particles from 
the asteroid and the Kuiper belt. t~-4~ A striking result of numerical studies 
is that specific laws for the escape rates seem to universally appear for par- 
ticles initially located in the vicinity of some stable resonant islands, t4~ This 
observation motivated us to investigate in general terms the possible con- 
nections between escape rates and the dynamical structures ruling diffusion 
processes in Hamiltonian systems. 

It is known that a crucial role in structuring diffusion is played by 
invariant KAM tori, either in the form of rotational curves or of resonant 
islands. Particles initially located far from tori escape very rapidly on 
account of the strong chaoticity of these regions. The behaviour at large 
enough times of the escape rates is therefore dominated by particles with 
initial conditions in the close neighbourhood of invariant tori. These are 
the orbits on which we shall concentrate our attention here. Particles 
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nearby the torus escape slower and slower as the distance d from the torus 
decreases. Perturbation theory provides the scaling lows with d of the size 
of the effective perturbation, which is responsible for the actions changes. 

In addition to invariant tori, also cantori can structure diffusion pro- 
cesses. Their global effect is somehow similar to a hardly permeable barrier. 
However, this effect is genetically relevant only in systems with two degrees 
of freedom. Their spatial extension is indeed very minute. It is therefore 
reasonable to expect that, in systems with more than two degrees of 
freedom, the particles are statistically able to efficiently go round them. The 
dominant effect is then the dependence of actions variations on the distance 
from the torus and we can macroscopically model particles escape as a 
non-homogeneous diffuse process. The space-dependence of transport coef- 
ficients is fixed by using perturbation theory scalings, discussed in Section 2. 
This permits, us to derive the long-time dominant behaviour of the escape 
rates for a general class of normal forms which are valid in the vicinity of 
an invariant toms. In particular, Kolmogorov quadratic normal form and 
Nekhoroshev exponential normal form are shown to lead to t -3/2 and 

. 

1/t log" t escape rates (with some positive a depending on the number of 
degrees of freedom). In systems with two degrees of freedom these laws 
are cut-off at very large times by the barrier effects due to cantori. Their 
low permeability leads to a sporadic Poissonian regime characterized by an 
exponential decay of the escape rate. The predicted laws are tested on well 
known 2D and 4D model maps in Section 3, where we also discuss other 
numerical results in the existing literature. 

2. N O R M A L  F O R M S  AND ESCAPE RATES CLOSE TO 
I N V A R I A N T  TORI 

The results provided by perturbation theory concerning the size of 
the remainder of normal forms are commonly believed to be just upper 
bounds. The scaling behaviours they provide seem then to have no specific 
physical meaning. However, this is not the case: the optimal remainder of 
normal forms has indeed a direct physical meaning since it is intimately 
related to the size of the effective resonant perturbation of the system. This 
result has been recently obtained in ref. 5 and we shall here briefly recall 
the basic ideas. Let us fix the domain where the convergence of the normal 
form is required. Without any loss of generality, the Hamiltonian of the 
system can be split as 

H(p,  q) = hno,-~ + h res + hnon~, (1) 
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where hnorm is in normal form and the remainder is split in two parts: hre s 
containing only Fourier modes corresponding to resonances inside the con- 
sidered domain and hnonres with all the other terms. The terms in hnonres c a n  
be eliminated by canonical transformations. In this process of elimination, 
resonant terms will genetically appear, even if initially absent, and cannot 
be subsequently reduced without shrinking the domain of convergence. The 
best normal form is therefore the one where all non-resonant terms have 
been reduced to be negligible with respect to hres. As a consequence, 
hre s fixes the size of the remainder of the optimal normal form. Simple con- 
siderations on the order of the resonances crossing the domain allow then 
to predict the "generic" size of hre s. 

With these considerations in mind, we now proceed to discuss the 
scaling of the remainders in the vicinity of an invariant torus. These 
scalings will then be used in Section 2.2 for the modelization of the escape 
process. 

2.1 Normal Forms 

Let us consider a Hamiltonian dynamical system with an invariant torus 
that, without loosing any generality, can be assumed to be in p = 0. Follow- 
ing Kolmogorov 16~, it is possible to transform the Hamiltonian to the local 
quadratic normal form 

H(p, q) = co. p + ~l(p, q) with ~ =  O(Ipl2), (2) 

which is analytic up to some threshold distance d~ from the invariant toms. 
This is evidently the minimal normal form compatible with the existence of 
an invariant torus carrying linear flow in p = O. Our aim now is to get the 
optimal normal forms, in the sense previously discussed. Following again 
ref. 5, let us split ~ in hres and hnonres , where hnonres contains all the non- 
resonant terms in a neighbourhood of radius d of p = 0. The hnonr~s can be 
eliminated by canonical transformations. The size of the optimal remainder 
hre s depends on d. Kolmogorov normal form is optimal when the distance 
d from the torus satisfies d2 < d < di, for some threshold d2. For d < d2, the 
resonant part hres becomes significantly smaller than ~ in (2). It is indeed 
simple to show that hre s contains only harmonics of Fourier order larger 
than 1/d% where 0c is a positive parameter depending on the number of 
degrees of freedom and the properties of the frequencies co of the invariant 
toms. For analytic Hamiltonians the Fourier modes will asymptotically 
decrease exponentially with respect to their order. It follows that hre s 
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decreases exponentially in 1/d ~. This shows that in the domain [p[ < d2 the 
optimal normal form is 

H(p, q)=co .p + &(p) + ~l'(p, q) with ~ ' =  O(exp[-1/IPl~]),  (3) 

where &(p) depends only on the action variables. Due to the exponential 
dependence of ~ '  on d, we will refer to (3) as the Nekhoroshev normal form, 
in the neighbourhood of a KAM torus. 

We now proceed to discuss the dynamical structure of the Hamiltonian 
system (3). Since the size of the effective perturbation ~ '  decreases 
exponentially with the inverse of the distance from the torus, there must be 
a third threshold d3 < d2 such that for Ipl < d3 the perturbation ~ is small 
enough to allow the application of Nekhoroshev theorem. (7) As discussed 
in ref. 8 (see also ref. 9), the possibility of application of Nekhoroshev 
theorem implies a basic change of the dynamical structure of the system. 
When the Nekhoroshev theorem cannot be applied, there is no place for 
invariant tori inside the meshes of the Arnold web. Diffusion and transport 
phenomena should be dominated by resonance overlapping. As a conse- 
quence, we expect that the change of actions is proportional to the size of 
the effective perturbation of the system. Conversely, when the Nekhoroshev 
theorem can be applied, resonances cannot overlap, in the sense that 
invariant tori fill a large volume of each mesh of the Arnold web. In this 
situation, the dominant mechanism of diffusion should be the one described 
by Arnold, (l~ usually known as "Arnold diffusion". The estimates provided 
by Nekhoroshev show that the transport times are at least exponentially 
long with respect to the inverse of the effective perturbation. Since the 
perturbation ~ '  is O(exp[ -  1/[p[~]), then the escape times must be longer 
than O(exp[exp[1/lpl~]]), namely they increase superexponentially with 
the inverse of the distance from the torus at p = 0. 

2.2 Escape Rates 

The conclusion arising from the results illustrated in Section 2.1 is that 
the dominant microscopic mechanism of escape from the region d 3 < 
Ipl <d~ is the overlapping of resonances. The amplitude of the latter is 
governed by the scaling laws of the effective perturbation. The escape 
process involves macroscopic time scales, i.e.,much larger than those asso- 
ciated with the crossing of a single resonance. The other crucial point for 
the escape process is the existence of a gradient of the effective perturbation 
in the direction outwards the torus. These two remarks lead us to model 
the escape process by a nonuniform diffusion with transport coefficients 
scaling according to (2) and (3). 
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Specifically, let us consider the unit interval I =  [0, 1 ]. A very large 
number of particles is initially uniformly distributed on / .  The position x(t) 
of a particle evolves according to the following equation 

dx(t) 
dt 

- s ( x )  b(t), (4) 

where b(t) is the usual Gaussian noise having zero average and white-in- 
time: 

( b( t), b( t') ) = 2D~5( t - t'). (5) 

The noise b(t) should be thought as the limiting case of colored noise with 
correlation-time tending to zero. The multiplicative noise term in (4) is 
therefore to be interpreted in the Stratonovich sense. ~ 

For s ( x )=  const, Eq. (4) is the usual Langevin equation corresponding 
to an ordinary diffusive process. The function s(x) is intended to represent 
the dependence of the size of the effective perturbation on the distance from 
the torus. For a Kolmogorov normal form (2), we would for example con- 
sider s ( x ) = x  2, while for Nekhoroshev normal form (3): s ( x )=  exp(-1/x~).  
More generally, we shall consider the following two classes: 

(a) s ( x ) = x  tJ with f l > l ;  

(b) s ( x ) = e x p ( - 1 / x  ~) ~ > 0 .  (6) 

The regions far away from the torus are strongly chaotic and particles 
getting there are essentially lost. We thus impose absorbing boundary con- 
ditions at x = ! and calculate the escape rate as the current J(t) flowing out 
of I at the boundary x = 1. 

The key for the analytical solution of the problem is the definition of the 
new variable 

f 
t d z  

y(x)  - .,~ s(z)" (7) 

The equation for y(t) reduces indeed to 

dy(t) 

dt 
- b ( t ) ,  (8) 

where the - sign has been omitted because b and - b  are statistically 
equivalent. The point x = 1 corresponds to y = 0, while x = 0 is mapped at 
infinity. We are thus left with an ordinary diffsive process on the positive 
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half-line, with absorbing boundary condition at the origin. The initial dis- 
tribution of particles P(y, 0) on the half-line is immediately obtained from 
the definition (7): 

P( y, O)= I dxldy l P( x, O)= I dx/dy l = s( x( y ) ) = g( y ). (9) 

The rate of escape J(t) is simply given by (see, e.g., ref. 12) 

J(t) = D(VyP)(O, t), (10) 

where the derivative has to be evaluated at y = 0. 
The evolution of the probability distribution P(y, t) is obtained by using 

the classical diffusive Green function with absorbing boundary condition: (~2) 

oo 1 ( Y -  z)2 e x p -  dz. (11) 
P(y, t )= P(z, O) ~/4~ Dt e x p -  4Dt - 4--Dt )J  

It follows from (10) and (11)" 

5(z) 
J(t) = D ] 

Jo 2 x/~r Dt Dt 
 exp( 

D ~(~/4Dtz) e x p ( z )  dz. (12) 

Let us now specify (12) to the two classes (6). For (a), the inversion in 
(7) is easily performed and gives 

,~(y) = (1 +( f l - -  1)y)/~/(' -p) (13) 

Inserting this expression into (12) we obtain the large-time behaviour of 
the escape rate 

J(t) ~ t -(2#- 1)/(2fl-2). (14) 

For class (b) the inversion of (7) is not immediate. However, for the 
large-time escape rate it is relevant just the behaviour of J for large values 
of the argument. The dominant term of the asymptotic expansion of (7) is 

xl+2 ,)exp(1) 
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The resulting expression of the function g(y) defined in (9) is 

g(y) _~ (y(log y) '+  l/~)- ,. (16) 

Inserting (16) into (12) it follows that the escape rate for large times is: 

J(t)  ~- ( t ( log  t) t+ l/~)-,. (17) 

Note that, except for logarithmic corrections, (17) is the limit of (14) for 

f l  - '+ (X). 

3. N U M E R I C A L  EXPERIMENTS 

In order to test the validity of the model presented in the previous sec- 
tion, we perform now a few numerical experiments on simple symplectic 
maps. We focus in particular on regions in the neighbourhood of invariant 
tori, uniformly distribute a large number of particles and measure their rate 
of escape as a function of time. 

Let us first consider the usual standard map 

q' = q + p, p' = p  + K sin q', 

with K =  0.12. For this value of the parameter, it is known that the chaotic 
region associated to the main resonance at p = 0  is bounded by invariant 
tori. We distributed l05 particles in the box q~[ -0 .0002 ,0 .0002] ,  
p c  [ -0 .0002 , -0 .0001  ], which is crossed by the boundering toms. Pre- 
vious numerical experiments showed that this region is very sticky tlS~ 
and is thus appropriate for our purposes. More precisely, it is observed 
that when the particles get out of the sticky region close to the boundary 
toms, they quickly flow into the chaotic region associated to the main 
resonance. The action p then rapidly becomes positive. We thus define as 
"escaped" the particles evolved to p > 0. The histogram of the number of 
escapers (smoothed with a running average) vs the map iteration number 
is shown in Fig. l a in log-log scale. Around 105.5 iterations, the escape rate 
varies with time approximately as a power law with exponent close to 
-3 /2 ;  the slope then decreases and finally there is a sharp fall off. The 
latter turns out to be exponential as revealed by the lin-log plot in Fig. lb, 
i.e., the rate of decrease of the remaining particles N is dN/d t  ~ e x p ( -  t/z). 
The exponential fall off is due to the presence of a cantorus close to the 
bounding torus. 
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Fig. 1. The escape rate vs. the number of iterations in Standard Map's experiment. In panel 
(a) (on the left), a reference line with slope - 3 / 2  is plotted. 

The key property of such cantorus is to have very small gaps. The 
typical time r for crossing is therefore very large. On the other hand, the 
particles initially located between the torus and the cantorus have to cross 
the latter to escape. Since ~: is very large, the particles behind the cantorus 
have time to get mixed and their probability to find a gap is very low. The 
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conditions for a Poissonian r6gime tl3) are therefore satisfied and the 
average number of particles escaping in the unit time is proportional to 
N/r,  as in classical radioactive decay processes. We have checked this 
behaviour looking at the original position of the escapers as a function of 
the escape time. For times in the exponential regime the escapers are 
initially located between the torus and the cantorus and the escape times 
are completely mixed. On the contrary, for smaller times, the escapers are 
initially located beyond the cantorus and we observe a smooth gradient of 
the escape times with their distance from the bounding toms. On the basis 
of this argument, one expects that the exponential behaviour does not last 
foreover. Indeed, sufficiently close to the invariant torus, the characteristic 
times should become larger than r, so that particles would not have 
enough time to get mixed. Our numerical experiment shows that in 2D 
maps the exponential behaviour, although possibly transient and not 
universal, can be the dominating one over huge timespans. 

The barrier effect of the cantorus should disappear if the number of 
degrees of freedom is increased. We have therefore considered the 4D 
H6non map studied in ref. 14, which is equivalent to a Hamiltonian 
dynamical system with three degrees of freedom. In ref. 14 the authors 
found that there is a very stable core around the center of the map p~ = 
P2--0, where invariant KAM tori fill most of the volume. Moreover, they 
found a gradient of escape times along the radial direction. Far from the 
center the particles escape very rapidly, while the escape times increase 
sharply approaching the central stable core. The authors of ref. 14 have 
uniformly distributed 10 5 particles in a box in the action space bounding 
the stable core and defined as "escaped" the particles getting out of the box. 
Using their data, kindly provided to us, we have plotted in Fig. 2 the 
histogram of the number of escapers vs the map iteration number. No 
exponential fall off is observed, as expected. 

A neat t -3 /2  scaling is observed, followed by a slow decrease of the 
slope. The slope - 3 / 2  is in agreement with (14) for fl = 2, corresponding 
to Kolmogorov normal form (2). The dashed line has slope - 1 ,  corre- 
sponding to the asymptotic expression of (17). The last part of the data 
seems to approach such a slope, even though the transition looks very 
gradual. This can be understood as follows: the transition from Kolmogorov 
to Nekhoroshev normal form is realized through a sequence of Birkoff 
normal forms of increasing polinomial order ft. The Nekhoroshev expo- 
nential normal form is the asymptotic fit of such sequence. For each of the 
polynomial normal forms, formula (14) holds. Therefore formula (17) 
should be interpreted as the asymptotic expression of (14) for fl ~ oo. 

A further test of the predicted escape rate laws is provided by Fig. 3, 
which refers to a 4D Henon map with corrections of eighth polar order 
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Fig. 2. The escape rate vs. the number of iterations in 4D Henon Map's experiment. 
Reference line with slope - 3 / 2  (solid) and - 1  (dashed) are plotted. 

(see ref. 14). Again, we observe a decrease of the escape rate with slope 
- 3 / 2 ,  followed by a slow relaxation to the asymptotic slope - 1 .  

Alternative studies on the escape of particles located close to invariant 
tori in systems with more than two degrees of freedom can be found in 
refs. 15 and 16. The existence of a region ruled by Kolmogorov quadratic 
normal form is neglected. The escapes are assumed to happen via a ballistic 
motion 

dx( t) 
dt 

-s(x), (18) 

where s(x) is given by (b)' in (6), according to Nekhoroshev law. The 
escape rate of this process coincides at the leading order with our formula 
(17). Note that this coincidence at the dominant order is due to the specific 
form of s(x) and would not be true, for example, for the normal forms of 
class (a) in (6). To check their predictions in numerical simulations, the 
authors do not compute directly the escape rate: they measure respectively 
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Fig. 3. The  same as Fig. 2 but  for the 4D Henong  M a p  with eight po la r  order  corrections.  

in ref. 16 the number of remaining particles as a function of time, and in 
ref. 15 the escape times as a function of the initial coordinates. This 
involves some free parameters which are fixed by fitting the numerical data. 

4. C O N C L U S I O N S  

We have shown that modelling the escape process of particles in the 
neighbourhood of invariant toil by a non-uniform diffusion leads to well- 
defined universal predictions for the escape rates. In 2D systems the barrier 
effects due to cantori can lead to a peculiar exponential fall-off at very 
large, but finite, times. The predicted rates of escape have been observed in 
numerical simulations of 2D and 4D symplectic maps. 

This makes us confident that measuring the escape rates can be a useful 
numerical tool to explore the structure of dynamical systems with many 
degrees of freedom. In particular, a - 3 / 2  power law behaviour followed by 
a slow decrease of the slope to the asymptotic value - 1  can be considered 
as a strong indication of the existence of invariant tori. Particles escape is 
then eroding their close neighbourhood characterized by a Kolmogorov 
and a Nekhoroshev normal form, respectively. 
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From a theoretical point of view, our results point to the macroscopic 
picture of the escape dynamics as a stochastic motion microscopically 
induced by resonance overlapping and driven away from the torus by the 
gradient of the effective perturbation. 
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